The world’s highest stability by the inventor of styrene catalysts
For styrene producers requiring highest operational stability & productivity, StyroStar® offers superior product stability from the original inventor of styrene industrial production and styrene catalysts (1929) as evidenced in the world’s largest reference list including BASF’s own styrene production.
BASF Quality and Reputation are Unmatched

BASF’s Chemical Catalysts combine the strength of BASF – with the experience and expertise of our chemists and engineers. Our styrene catalysts are valued components of the dehydrogenation process for worldwide chemical manufacturing companies. BASF’s commitment to the styrene monomer production process and ethylene dehydrogenation catalysts results in products and services that meet and surpass customer expectations and requirements.

Important Facts about Styrene at BASF

- BASF has developed styrene catalysts for over 50 years (since 1965).
- Styrene production since 1965.
- BASF still runs a styrene plant in Ludwigshafen, Germany.

Applications for Styrene

Widely used in the creation of plastics and rubber, styrene monomer is the largest petrochemical intermediate market. A significant quantity of styrene monomer is polymerized to polystyrene. Other products of styrene monomer are co-polymers such as acrylonitrile butadiene styrene (ABS), styrene-butadiene rubber (SBR), styrene-acrylonitrile resin (SAN) and unsaturated polyester resins.

Milestones in Styrene Catalyst History

1930s
- 2n0 Catalyst Systems

1995
- Isothermal Styrene Monomer (SM) process development discontinued

2002
- S6-34 onstream at BASF Antwerp

2007–2009
- StyroStar® S6-40 for low Steam-to-Oil (S/O) onstream at BASF Ulsan
- StyroStar® S6-42 for low S/O onstream at BASF Ludwigshafen
- StyroStar® S6-60 for med. S/O onstream at Synthos Dwory

2010
- Acquisition of the CRI styrene catalyst business
- StyroStar® S6-62 for med. S/O
- FCG*-2 for med. S/O

2017
- StyroStar® S6-42 select

The Main Uses of Styrene Include:

- Insulation
- Packaging
- Automotive Parts
- Fiberglass
- Food and Beverage Containers
- Plastic Pipes / Tubing

Important Facts about Styrene at BASF

- BASF has developed styrene catalysts for over 50 years (since 1965).
- Styrene production since 1965.
- BASF still runs a styrene plant in Ludwigshafen, Germany.

Applications for Styrene

Widely used in the creation of plastics and rubber, styrene monomer is the largest petrochemical intermediate market. A significant quantity of styrene monomer is polymerized to polystyrene. Other products of styrene monomer are co-polymers such as acrylonitrile butadiene styrene (ABS), styrene-butadiene rubber (SBR), styrene-acrylonitrile resin (SAN) and unsaturated polyester resins.

The Main Uses of Styrene Include:

- Insulation
- Packaging
- Automotive Parts
- Fiberglass
- Food and Beverage Containers
- Plastic Pipes / Tubing

Important Facts about Styrene at BASF

- BASF has developed styrene catalysts for over 50 years (since 1965).
- Styrene production since 1965.
- BASF still runs a styrene plant in Ludwigshafen, Germany.

Applications for Styrene

Widely used in the creation of plastics and rubber, styrene monomer is the largest petrochemical intermediate market. A significant quantity of styrene monomer is polymerized to polystyrene. Other products of styrene monomer are co-polymers such as acrylonitrile butadiene styrene (ABS), styrene-butadiene rubber (SBR), styrene-acrylonitrile resin (SAN) and unsaturated polyester resins.

Milestones in Styrene Catalyst History

1930s
- 2n0 Catalyst Systems

1995
- Isothermal Styrene Monomer (SM) process development discontinued

2002
- S6-34 onstream at BASF Antwerp

2007–2009
- StyroStar® S6-40 for low Steam-to-Oil (S/O) onstream at BASF Ulsan
- StyroStar® S6-42 for low S/O onstream at BASF Ludwigshafen
- StyroStar® S6-60 for med. S/O onstream at Synthos Dwory

2010
- Acquisition of the CRI styrene catalyst business
- StyroStar® S6-62 for med. S/O
- FCG*-2 for med. S/O

2017
- StyroStar® S6-42 select

The Main Uses of Styrene Include:

- Insulation
- Packaging
- Automotive Parts
- Fiberglass
- Food and Beverage Containers
- Plastic Pipes / Tubing

Important Facts about Styrene at BASF

- BASF has developed styrene catalysts for over 50 years (since 1965).
- Styrene production since 1965.
- BASF still runs a styrene plant in Ludwigshafen, Germany.

Applications for Styrene

Widely used in the creation of plastics and rubber, styrene monomer is the largest petrochemical intermediate market. A significant quantity of styrene monomer is polymerized to polystyrene. Other products of styrene monomer are co-polymers such as acrylonitrile butadiene styrene (ABS), styrene-butadiene rubber (SBR), styrene-acrylonitrile resin (SAN) and unsaturated polyester resins.
Organization of the Styrene Catalyst Business

AMERICAS
- Iselin, New Jersey
 - Headquarters
 - Regional Marketing & Sales
- Elyria, USA
 - Catalyst Production
- Houston, USA
 - Sales Office
- Sao Paulo, Brazil
 - Sales Office

EMEA
- Ludwigshafen, Germany
 - Catalyst Production
 - Catalyst Research
 - Regional Sales
 - Technical Service
- De Meern, Netherlands
 - Customer Service
- Moscow, Russia
 - Sales Office
- Abu Dhabi, UAE
 - Sales Office

ASIA
- Shanghai, China
 - Oxidation and Dehydrogenation
 - Catalysts Global Business Management
 - Catalyst Production
 - Regional Sales
 - Technical Service
- Seoul, South Korea
 - Sales Office
- Tokyo, Japan
 - Sales Office

Styrene Adiabatic Dehydrogenation Process

In most cases, the styrene process consists of two or three adiabatic reactor systems that combine superheated steam with ethylbenzene to produce styrene with minimal by-products. A simplified process schematic with two reactor systems is shown below.

Styrene Simplified Reaction Scheme

```
C6H6 + C2H4 + H2O → CO2 + H2 + C8H8

Ethylbenzene Styrene Coke

Benzene Toluene

+ CH4

+ H2O

CO2 + H2
```

Benzene

Ethylbenzene

Styrene

Coke
Advantages as a Styrene Catalyst Supplier

- BASF offers over 90 years experience in styrene production and more than 100 years in catalyst research. This legacy forms a strong foundation for continuous innovation and product improvement.

- Our constant improvement of styrene catalysts results in the introduction of a new catalyst constantly. For example, we introduced StyroStar® S6-42 in 2009 and StyroStar® S6-62 in 2010. We introduced StyroStar® S6-42 Select to the market in 2017.

- BASF experts provide:
 - Catalyst filling supervision
 - Start-up assistance
 - Regular detailed performance reviews and optimization of current operations
 - Routine customer visits
 - Global Styrene Customer Forum meetings

Delivering our products to the customer site is just the beginning of our offerings. BASF stands behind its products and, through our global technical service representatives, ensures that our products perform and deliver value (for more information, please see our Technical Services section on page 27).

Our innovations make our customers more successful.

Main By-Products in Organic Phase

Molecules of Benzene, Toluene, Phenylacetylene and α-Methylstyrene with approximate formation in weight percentages (wt.%) in standard conditions.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Approx. Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>1–2 wt.%</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.5–1 wt.%</td>
</tr>
<tr>
<td>α-Methylstyrene</td>
<td>0.01–0.03 wt.%</td>
</tr>
<tr>
<td>Phenylacetylene</td>
<td>0.005–0.01 wt.%</td>
</tr>
</tbody>
</table>

Value-Added Customer Service:
From order placement through invoicing, BASF’s Customer Service functions as the customer’s advocate by:

- Assigning a primary customer service representative
- Providing a Customer Service Network with 3 central locations
- Addressing customer concerns in easy-to-understand terms
BASF Research & Development

With research and development, we shape the future and develop profitable growth. In 2018, we generated sales of around € 9 billion with products launched on the market in the past five years that stemmed from research and development activities. Optimized processes and intelligent system solutions, along with new and innovative products, make key contributions to the long-term success of our customers as well as ourselves. At BASF, more than 11,000 employees are working worldwide in research and development at approximately 70 locations.

BASF’s Research Verbund covers the central technology platforms, the research and development units in our operating divisions worldwide and at group companies, as well as affiliated companies. In addition, we are currently involved in more than 1,900 collaborative partnerships worldwide with leading universities, research institutes, startup companies, and industrial partners, which add momentum to our research activities around the world.

BASF Styrene Catalyst Research

Catalyst Research is the backbone of the BASF styrene catalyst business. By constantly improving our portfolio, we make sure our customers are always provided with the best product available on the market!

Advantages of Collaborating with BASF R&D

- Projects benefit from BASF’s close cooperation between production, marketing, technical services, and R&D.
- Our own pilot plant uses the reactants from styrene production plants to create realistic scenarios for catalyst screening and long-term testing.
- Customers have direct access to BASF’s R&D facilities.
Styrene catalyst research is one of the most intense topics for BASF R&D’s catalyst development with dedicated isothermal and adiabatic pilot plant units. Our R&D scientists and technicians develop catalysts with the focus on the future needs of our customers. We provide fast solutions to customer requirements based on our in-depth knowledge of styrene catalysts as well as process testing performed in our dedicated pilot plant facilities. Close cooperation with the styrene production unit in BASF SE enables us to continuously improve styrene catalysts for our customers.”

Dr. Florina Patcas, Senior Principal Scientist
Catalysis Research, BASF SE
Quality Control and Assurance

BASF has a quality assurance system which strictly adheres to the specifications defined by R&D and safety guidelines. Each step in manufacturing, documentation, and testing at BASF is reviewed and controlled by the highly qualified Quality Assurance team.

The quality control team performs stability studies as well as testing of raw materials, intermediates, and finished products in accordance with international standard operating procedures. This allows for successful execution of quality control testing.

The quality control laboratory ensures that our raw materials to finished products fulfill the required specifications to achieve maximum performance. BASF has the requisite analytical instruments and equipment to meet the needs of quality control. Due to these extensive quality control and assurance measures, our quality management system continuously earns ISO 9001 certification.

Catalysts Manufacturing

BASF has a great deal of experience in producing styrene catalysts as well as other catalysts in its manufacturing facility at Ludwigshafen, Germany. This Verbund Site is a state-of-the-art manufacturing facility that complies with internationally recognized standards to ensure that our high quality products are safe and effective. BASF continuously invests in its production facilities to improve productivity and energy efficiency.

The highly-trained and qualified manufacturing teams provide a wealth of experience to ensure that high quality standards are maintained throughout the operational process.

BASF’s first production plant for chemical catalysts in Asia officially opened in November 2017. It produces base metal catalysts, mainly SM catalysts and adsorbents, to serve the region’s growing chemical industry. Production in China provides shorter delivery times & higher flexibility.

There three styrene catalysts manufacture sites worldwide: Ludwigshafen, Germany; Elyria, US; Shanghai, China.

One Source, Three Plants, One Quality!
BASF has been serving the styrene catalyst market for decades. Our catalyst portfolio includes catalysts for low and ultra-low S/O processes, as well as for medium and high S/O ratio applications. Our styrene catalysts are valued components of the dehydrogenation process for worldwide operating chemical companies. Our aim is to develop a catalyst that best serves the needs of our customers.

StyroStar® S6-42 is designed especially for the dehydrogenation of ethylbenzene to styrene at ultra-low (0.85 wt./wt.) and low S/O ratios (<1.2 wt./wt.). This catalyst provides very low deactivation rate and very low Phenylacetylene (PA) formation.

Compare with StyroStar® S6-42, BASF’s new developed StyroStar® S6-42 Select gives additional 0.3 – 0.4% selectively with the same outstanding stability.

StyroStar® S6-62, FlexiCat Gold®-2 (FCG-2) are designed for medium S/O applications. All these medium S/O catalysts are developed to meet the needs of our customers.

StyroStar® S6-62 operates in the S/O range between 1.2 – 2.0 wt./wt. and provides the highest styrene selectivity.

The merger of BASF and CRI technical assets resulted in the development of FCG-2 for medium to very high S/O ratio (1.2 – 2.5 wt./wt.) operations.

Catalyst Portfolio

<table>
<thead>
<tr>
<th>Properties</th>
<th>StyroStar® S6-42</th>
<th>StyroStar® S6-42 Select</th>
<th>StyroStar® S6-62</th>
<th>FlexiCat Gold®-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Bulk Density, kg/m³</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Tapped Density, kg/m³</td>
<td>1,300 – 1,650</td>
<td>1,300 – 1,650</td>
<td>1,300 – 1,650</td>
<td>1,300 – 1,650</td>
</tr>
<tr>
<td>Max. Loss On Ignition (L.O.I.)</td>
<td>900°C, wt.%</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Min. Knife Edge Hardness, N</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Max. Attrition Loss, wt.%</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Min. K₂O, wt.%</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Min. Promoters, wt.%</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fe₂O₃ matrix</td>
<td>matrix</td>
<td>matrix</td>
<td>matrix</td>
<td>matrix</td>
</tr>
<tr>
<td>Introduced in</td>
<td>2008</td>
<td>2017</td>
<td>2010</td>
<td>2010</td>
</tr>
</tbody>
</table>

Catalyst Segmentation

<table>
<thead>
<tr>
<th>S/O Ratio (wt./wt.)</th>
<th>Catalysts offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>very high</td>
<td>StyroStar® S6-62, FlexiCat Gold®-2</td>
</tr>
<tr>
<td>high</td>
<td>StyroStar® S6-62, FlexiCat Gold®-2</td>
</tr>
<tr>
<td>medium</td>
<td>StyroStar® S6-62, FlexiCat Gold®-2</td>
</tr>
<tr>
<td>low</td>
<td>StyroStar® S6-42, StyroStar® S6-42 Select</td>
</tr>
<tr>
<td>ultra-low</td>
<td>StyroStar® S6-42, StyroStar® S6-42 Select</td>
</tr>
</tbody>
</table>
Styrene Catalysts for Low S/O

StyroStar® S6-42, StyroStar® S6-42 Select

StyroStar® S6-42 is designed for the dehydrogenation of ethylbenzene to styrene at very low S/O ratios. Its outstanding features include excellent activity, selectivity, and mechanical strength. Like its proven predecessor, catalyst StyroStar® S6-40, the new StyroStar® S6-42 is a robust and durable catalyst, combining excellent mechanical properties with an exceptionally low monthly decline rate.

In particular, StyroStar® S6-42 exhibits improved performance in terms of activity (approx. 5°C) and selectivity (0.2 – 0.3 wt.%) depending on the conditions. Also, like StyroStar® S6-40, the formation of by-products is very low. Compare with StyroStar® S6-42, BASF’s new developed StyroStar® S6-42 Select gives additional 0.3 – 0.4% selectively with same outstanding stability.

StyroStar® S6-42 (Select) References

2009 BASF, Germany
2010 UNIGEL EDN, Brazil
2011 BP SECCO, China
2012 FCFC SM2, Taiwan
2013 TSMC, Taiwan
2014 SK Chemicals, Korea
2015 TSMC, Taiwan
2016 BP SECCO, China
2017 Dow Bühlen, Germany
2018 Shandong Yuhuang, China
2019 Styrolution, USA

The Market Leader in Low Steam-To-Oil (S/O)

- Designed for operation at low and ultra-low S/O ratios
- Outstanding activity and selectivity
- Exceptionally low monthly decline rate
- Highest stability for low and ultra-low S/O ratios
- Robust and durable mechanical strength
- Low PA formation
Commercial Reference

Stability of StyroStar® S6-42 Catalyst

Experience with CST

Catalyst Stabilization Technology (CST)*

- StyroStar® S6-42 and StyroStar® S6-42 Select can be used with CST.

Product and Packaging

- StyroStar® S6-42 and StyroStar® S6-42 Select is especially developed for very low S/O ratio (0.85 – 1.2 wt./wt.) operations.

Packaging

- 1,150 L super sack (IBC flexible) with liner

Weight

- 1,100 kg net

Shipping Point

- BASF SE, Ludwigshafen, Germany; Shanghai, China; Elyria, US

The typical physical form is 3 mm extrudates that are red-brown in color. The chemical composition refers to the catalyst in its calcined state.

Typical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average bulk density, kg/m³</td>
<td>1,400</td>
</tr>
<tr>
<td>Tapped Density, kg/m³</td>
<td>1,300 – 1,600</td>
</tr>
<tr>
<td>L.O.I. at 900°C, wt.%</td>
<td>3 maximum</td>
</tr>
<tr>
<td>Knife Edge Hardness, N</td>
<td>50 minimum</td>
</tr>
<tr>
<td>Attrition Loss, wt.%</td>
<td>1.5 maximum</td>
</tr>
<tr>
<td>K₂O, wt.%</td>
<td>10 maximum</td>
</tr>
<tr>
<td>Promoters, wt.%</td>
<td>8 minimum</td>
</tr>
<tr>
<td>Fe₂O₃, matrix</td>
<td>537 minimum</td>
</tr>
</tbody>
</table>

These typical properties do not represent process capabilities or specifications.

* Styrene Catalyst Stabilization Technology has been patented by Badger Licensing.
Styrene Catalysts for Medium and High S/O

StyroStar® S6-62

StyroStar® S6-62 is designed for the dehydrogenation of ethylbenzene to styrene for medium and high S/O ratio (1.2 – 2.0 wt./wt.) conditions. Its outstanding features include good activity, excellent selectivity and mechanical strength. Like its proven predecessor, Catalyst StyroStar® S6-60, StyroStar® S6-62 is a robust and durable catalyst. Compared to FlexiCat Gold®-2 and StyroStar® S6-60, StyroStar® S6-62 has a higher catalyst activity and is the catalyst of choice for long runs with excellent selectivity.

Features
- Highest selectivity in the medium S/O catalyst portfolio
- Very good activity
- Excellent mechanical strength

StyroStar® S6-62 References
- **2010** Customer A* (Europe)
- **2012** Customer B* (Asia)
- **2013** Petrobras, Brazil
 - Americas Styrenics, USA
- **2014** Saudi Chevron Phillips, Saudi Arabia
 - Customer B* (Asia)
- **2015** Taiwan SM Corp., Taiwan
 - Synthos Dwory, Poland
 - Americas Styrenics, USA
 - Customer B* (Asia)
- **2016** Videolar Innova, Brazil
 - Customer C* (Asia)
- **2017** Customer D* (Asia)
- **2018** Versalis, Italy
 - Customer B* (Asia, two units)
 - Videolar Innova, Brazil
 - Customer C* (Asia)
- **2019** Taiwan SM Corp., Taiwan
 - STYROLUTION TX City, US

FlexiCat Gold®-2

FlexiCat Gold®-2 is designed for the dehydrogenation of ethylbenzene to styrene. Outstanding features include excellent activity, selectivity and mechanical strength. FCG-2 is based on the proven technology of FlexiCat Gold® (FCG) catalysts. Like its predecessor FlexiCat Gold®, FlexiCat Gold®-2 is a robust and durable catalyst, combining outstanding mechanical properties with an exceptionally low monthly decline rate and very stable selectivity during its lifecycle. In particular, FlexiCat Gold®-2 demonstrates improved performance in terms of activity (up to approximately 3°C) and selectivity (up to 0.8 mol-%) depending on the conditions.

Features
- Applicable for medium to very high S/O ratios
- Good selectivity and activity
- Low PA formation
- Excellent mechanical strength

StyroStar® S6-62 References

- **2010** Customer A* (Europe)
- **2012** Customer B* (Asia)
- **2013** Petrobras, Brazil
 - Americas Styrenics, USA
- **2014** Saudi Chevron Phillips, Saudi Arabia
 - Customer B* (Asia)
- **2015** Taiwan SM Corp., Taiwan
 - Synthos Dwory, Poland
 - Americas Styrenics, USA
 - Customer B* (Asia)
- **2016** Videolar Innova, Brazil
 - Customer C* (Asia)
- **2017** Customer D* (Asia)
- **2018** Versalis, Italy
 - Customer B* (Asia, two units)
 - Videolar Innova, Brazil
 - Customer C* (Asia)
- **2019** Taiwan SM Corp., Taiwan
 - STYROLUTION TX City, US

* Undisclosed customer
StyroStar® S6-62

StyroStar® S6-62 is suitable for a wide range (S/O ratio 1.2 – 2.0 wt./wt.) of plant designs and operating conditions, including 3-stage applications such as UOP/Lummus Smart™ Technology.

Packaging
- 1,150 L super sack (IBC flexible) with liner

Weight (include both metric and US measures)
- 1,100 kg net

Shipping Point
- BASF SE, Ludwigshafen, Germany; Shanghai, China; Elyria, US

The typical physical form is 3 mm extrudates that are red-brown in color. The chemical composition refers to the catalyst in its calcined state.

Typical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average bulk density, kg/m³</td>
<td>1,400</td>
</tr>
<tr>
<td>Tapped Density, kg/m³</td>
<td>1,300 – 1,650</td>
</tr>
<tr>
<td>L.O.I. at 900°C, wt.%</td>
<td>3 maximum</td>
</tr>
<tr>
<td>Knife Edge Hardness, N</td>
<td>50 minimum</td>
</tr>
<tr>
<td>Attrition Loss, wt.%</td>
<td>1.5 maximum</td>
</tr>
<tr>
<td>K₂O, wt.%</td>
<td>10 minimum</td>
</tr>
<tr>
<td>Promoters, wt.%</td>
<td>10 minimum</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>matrix</td>
</tr>
</tbody>
</table>

These typical properties do not represent process capabilities or specifications.

FlexiCat Gold®-2

FCG-2 is especially developed for medium to very high S/O ratio (1.2 – 2.5 wt./wt.) operations.

Packaging
- 1,150 L super sack (IBC flexible) with liner

Weight (include both metric and US measures)
- 1,100 kg net

Shipping Point
- BASF SE, Ludwigshafen, Germany; Shanghai, China; Elyria, US

The typical physical form is 3 mm extrudates that are red-brown in color. Star-shaped 6 mm extrudates are available on request. The chemical composition refers to the catalyst in its calcined state.

Typical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average bulk density, kg/m³</td>
<td>1,400</td>
</tr>
<tr>
<td>Tapped Density, kg/m³</td>
<td>1,300 – 1,650</td>
</tr>
<tr>
<td>L.O.I. at 900°C, wt.%</td>
<td>3 maximum</td>
</tr>
<tr>
<td>Knife Edge Hardness, N</td>
<td>90 minimum</td>
</tr>
<tr>
<td>Attrition Loss, wt.%</td>
<td>1.5 maximum</td>
</tr>
<tr>
<td>K₂O, wt.%</td>
<td>10 minimum</td>
</tr>
<tr>
<td>Promoters, wt.%</td>
<td>8 minimum</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>matrix</td>
</tr>
</tbody>
</table>

These typical properties do not represent process capabilities or specifications.
Support Technical Services

Customers who utilize our catalysts are offered individualized service agreements for a wide range of technical services. BASF’s dedicated technical service team has extensive experience in oxidation and dehydrogenation catalytic behavior under a variety of operating conditions. This technical team is equipped with a full range of resources to analyze the most complex problems, and has full access to our R&D facility and dedicated R&D personnel. This comprehensive service approach provides the best possible assistance to our customers anytime and anywhere in the world.

Each region in the world is assigned a dedicated BASF technical team.

Asia Pacific
through our Styrene catalyst global business management in Shanghai

Europe, the Middle East, and Africa (EMEA)
through our technical service team in Ludwigshafen

Americas
through our technical service team in Ludwigshafen

Features
- Catalyst selection and performance forecasting
- Loading and start-up support
- Performance evaluation and optimization of current run
- Analysis of aged catalyst
- Troubleshooting
- Lifetime calculations
- Training of production staff

Customer Support: BASF Styrene catalyst package

BASF provides not only the fitting styrene catalyst. In addition, we provide top class technological expertise by our experts as well as guidelines for the catalyst’s use. We support our customers even by conducting dedicated experiments in our R&D department, in case that is necessary. Last but not least, we offer in-depth catalyst training covering the whole theoretical background of this technology.
Americas
BASF Corporation
25 Middlesex/Essex Turnpike
Iselin, New Jersey, 08830, USA
Tel: +1-732-205-5000
Fax: +1-732-205-7725
Email: catalysts-americas@basf.com

Asia Pacific
BASF (China) Company Limited
300 Jiang Xin Sha Road
Pudong, Shanghai 200137
P.R. China
Tel: +86-21-2039 2549
Fax: +86-21-2039 4800-2549
Email: catalysts-asia@basf.com

Europe, Middle East, Africa
BASF De Meern BV Catalysts
The Netherlands
Tel: +31-30-666 9444
Email: catalysts-europe@basf.com

About Us
BASF’s Catalysts division is the world’s leading supplier of environmental and process catalysts. The group offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products, including advanced battery materials. By leveraging our industry-leading R&D platforms, passion for innovation and deep knowledge of precious and base metals, BASF’s Catalysts division develops unique, proprietary solutions that drive customer success.

BASF – We create chemistry

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required. © 2019 BASF

StyroStar® is a trademark of BASF.

BF- 10511 08/2019

www.catalysts.basf.com/chemicals