EnviroSOx enables full FCC operation through Turn Around

Applying BASF’s EnviroSOx additive, the PKN ORLEN Płock refinery was able to maintain FCC flue gas SOx emissions below 800 mg/Nm³ (@ 3 vol% O₂) during a planned hydrocracker turnaround, enabling the FCC to process non-hydrotreated feed without sacrificing throughput.

Introduction

PKN ORLEN operates the refineries in Płock (Poland), Kralupy (the Czech Republic) and Mazeikiu (Lithuania).

The Płock refinery has a Nelson complexity index of 9.5 and a capacity of 11.9 million tons per year of crude oil. PKN ORLEN’s FCCU is an UOP "side-by-side" design plant of a nominal daily capacity of 4,578 tons per day.

During the planned turnaround of the hydrocracker, the FCC feed sulfur would increase from 0.5 wt% to 2.0 wt% requiring the need to control flue gas SOx emissions under 800 mg/Nm³ @ 3 vol% O₂, the maximum allowed by the refinery.

EnviroSOx

BASF’s EnviroSOx is the latest generation of environmental additives to control SOx emissions in FCC flue gas. By optimizing the combination of cerium oxide (CeO₂), magnesium oxide (MgO), and vanadium oxide (V₂O₅), BASF enhanced SOx pick up capacity in both full burn and partial burn regenerators while maintaining robust cycle stability and sulfur release. As a result, maximum SOx reduction is achieved with minimum dosage of additive.

EnviroSOx chemistry to pick up SOx and to regenerate MgO is depicted in Figure 1. It must be noted that only SO₃ will be picked up by MgO, therefore oxidation of SO₂ to SO₃ is one of the most important steps:

![Fig.1 SOx pick up and MgO regeneration mechanism](image)

Besides SO₂ oxidation and SO₃ pick up, the other important step is the MgO regeneration which, as shown in Figure 1, is accomplished in two sets of reactions: first in the riser reactor, and then in the stripper, where MgO regeneration is completed.

The performance of the additive to pick up SOx will depend on the operational conditions in the unit. It is influenced by the SOx partial pressure, catalyst circulation rate, regenerator temperature, stripper efficiency, and excess O₂. On the other hand, in partial burn operations, the CO₂/CO ratio will also
be an important factor to drive the SOx removal effectiveness of the additive.

SOx Emissions control at Płock refinery

The base FCC Catalyst during the additive trial is BASF’s Flex-Tech® Resid Catalyst. EnviroSOx additive was dosed separately into the FCC regenerator. Prior to the introduction there was no SOx reduction additive in the inventory.

To monitor the performance of the additive, a statistical model was calibrated using operation data collected three months prior to predict FCC SOx emissions. The model, developed with MINITAB (a statistical software package), demonstrated that refinery FCC SOx emissions correlate well with sulfur content in the feedstock, the feed rate, the regenerator temperature and O₂ content in flue gas. As there was no additive in use during the calibration period, the model output is considered as uncontrolled SOx emissions (Figure 2).

Emissions were regularly monitored by a flue gas analyzer, local refinery laboratory and by third party laboratory flue gas analysis. The online measurements were made locally (2-3 times/day) using a BASF supplied instrument corrected to a specified excess oxygen. Third party laboratory measurements were organized by refinery.

Figure 3 illustrates the performance of EnviroSOx. Comparing the actual and uncontrolled SOx values, the Pick-Up-Factor (PUF) was calculated to be between 40 and 50 kg of SOx removed per kg of additive.

The additive proved to be very effective in reducing PKN ORLEN Płock FCC Flue Gas SOx emissions below the target of 800 mg/Nm³ @ 3% O₂. Effectively reducing SOx emissions by 70 wt% enabled the refinery to operate within the emissions limit without having to interrupt the FCC operation.

Throughout the application of EnviroSOx FCC feed sulfur exceeded the anticipated concentration. In typical operations, without the additive, the refinery would respond by decreasing feed rate or switching feed sources (Figure 4).
EnviroSOx demonstrated good retention

Another important property for SOx additives is the attrition resistance after multiple cycles of absorption and desorption. During the FCC process, MgO in the additive interacts with sulfur containing species to form magnesium sulfate (MgSO₄). This chemical interaction imparts physical stress on the additive particle. In subsequent steps, MgO is regenerated, continuing the stress profile. Repetitive cycles as such can cause additive particle fracture and degrade the attrition resistance over time. Excessive degradation can cause severe loss of SOx additive from the circulating catalyst inventory and reduced SOx control performance.¹

A key improvement offered by EnviroSOx is its stability. The optimization of components delivers a higher attrition resistance of EnviroSOx resulting in minimum losses. In Figure 5, the composition of Ecat and Fines are compared. Both, CeO₂ and Mg, were measured in Ecat and fines samples. The fines showed values that are below the Ecat ones, demonstrating there is no preferential loss of additive in the unit.

Conclusions

EnviroSOx delivered premium performance in controlling FCC SOx emissions at PKN Orlen Płock Refinery. The additive exhibited a PUF between 40-50 offering over 70 wt% SOx reduction compared to operation without the additive in the inventory.

References

About Us

BASF’s Catalysts division is the world’s leading supplier of environmental and process catalysts. The group offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products, including advanced battery materials. By leveraging our industry-leading R&D platforms, passion for innovation and deep knowledge of precious and base metals, BASF’s Catalysts division develops unique, proprietary solutions that drive customer success.

BASF - We create chemistry