High Performance
Spherical Catalysts Carriers
BASF is a global leader in catalyst production. Catalysts manufacturing is a core expertise which relies on decades on commercial experience. We offer a wide range of spherical porous carriers to comprehensively meet the needs of heterogeneous catalyst manufacturers. Substrate selection is critical, and requires deep understanding of physical and chemical properties of the chosen carrier. BASF produces catalyst support spheres with unique and controlled manufacturing processes to provide suitable carriers for numerous applications.

BASF offers alumina-based (SAS and CSS) and silica-based (Perlkat) carrier product lines to meet most stringent customer requirements. Whether you need an interacting, bifunctional or chemical resistant carrier, BASF can supply an appropriate sphere. Vast experience allows our in-process and post treatments to alter and tune-in density, pore structure, activity and thermal stability.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>SAS-200</th>
<th>SAS-90</th>
<th>SAS-40</th>
<th>SAS-10</th>
<th>CSS-350</th>
<th>CSS-165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ wt %</td>
<td></td>
<td>99.6</td>
<td>99.6</td>
<td>99.5</td>
<td>99.5</td>
<td>99.6</td>
<td>99.6</td>
</tr>
<tr>
<td>SiO₂ wt %</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.25</td>
<td>0.25</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Na₂O wt %</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Surface Area m²/g</td>
<td></td>
<td>200</td>
<td>90</td>
<td>40</td>
<td>10</td>
<td>350</td>
<td>165</td>
</tr>
<tr>
<td>Pore Volume cc/g</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Abrasion wt %</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>Bulk Density kg/m³</td>
<td></td>
<td>785</td>
<td>785</td>
<td>800</td>
<td>800</td>
<td>770</td>
<td>750</td>
</tr>
<tr>
<td>Crush Strength lb per 1/8”</td>
<td></td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>10</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Phase</td>
<td></td>
<td>γ, δ, θ, α</td>
<td>γ, δ, α</td>
</tr>
<tr>
<td>Standard Size</td>
<td></td>
<td>1/8”, 1/16”</td>
<td>1/8”, 1/16”</td>
<td>1/8”, 1/16”</td>
<td>1/8”, 1/16”</td>
<td>1/8”, 1/16”</td>
<td>1/8”, 1/16”</td>
</tr>
</tbody>
</table>

High Performance Spherical Catalysts Supports

- Superior physical integrity
- Low attrition
- Exceptional crushing strength
- Minimizes channeling
- Low pressure drop
- Optimal flow distribution
- Very narrow pore size distribution
- Mono- and bimodal porosity
- Distinct phase composition
- Controlled pore structure and surface area
- Controlled surface chemistry

Summary Table: SAS and CSS Spheres (Alumina)

Alumina Transformations Phase Diagram

Manufacturing Routes

SAS Spheres

- Gibbsite → Flash Activation → Proprietary Process → Phase Specific Alumina Spheres

CSS Spheres

- Gibbsite → Flash Activation → Forming into Spheres → Processing/Activation → Activated Alumina Spheres

Typical properties
SAS Spheres Phase Composition

The SAS product line offers phase-controlled alumina to maximize performance of a catalyst under most demanding reaction conditions.

SAS spheres production process allows to produce phase-selective alumina supports with no residual amounts of chi or eta-alumina. Purity of the phase is controlled by precise temperature selection in a production process and high quality standards imposed on feed material. BASF also offers custom-produced spheres where phase purity and crystallinity are adjusted per customer’s specific request.

CSS Spheres Phase Composition

CSS spheres provide mixed phase and amorphous active surface suitable for synthesis of controlled metal dispersion catalysts.

Unlike SAS alumina spheres, CSS supports are designed to deliver maximal surface area for most efficient distribution of the supported active component. CSS spheres exhibit mixed phase composition and present most cost-efficient solution for catalyst producers looking for stable, robust and performing alumina supports.

SAS and CSS Spheres Porosity

SAS and CSS spheres are characterized by tailored porosity ranging from essentially microporous to macroporous pore systems.

SAS and CSS spheres exhibit engineered porosity that enables good dispersion of the active component and enhanced mass-transport characteristics. SAS-10, 90 and 200 feature well defined monomodal pore size distribution and SAS-40 offers bimodal pores. CSS spheres are offered in two types: high surface area microporous CSS350 to maximize surface activity and metal-binding properties and intermediate surface area CSS165 to shift micropores to mesopores enabling more efficient mass transport.

SAS and CSS Spheres Acidity

BASF alumina spheres are characterized by wide range of Lewis acidities. Surface acidity is correlated with phase composition and represents an important parameter in a catalyst design. Combined SAS/CSS alumina spheres portfolio offers products covering the whole spectrum of surface reactivities: from highly inert/less reactive (SAS-10) to highly functional and highly developed surfaces (CSS, SAS). This combination enables producers to choose material matching their needs and/or explore different portfolio products in their processes.
Primary alumina particles packings SAS to CSS spheres are built to optimize mass transport and surface chemistry.

The macrostructure of alumina spheres and primary alumina particles packing often needs to be considered when developing catalysts for highly mass transport limited processes. CSS spheres consist of less densely packed agglomerates allowing for higher fraction of inter-particle voids while SAS spheres exhibit relatively dense and robust matrix making those spheres very stable under aggressive conditions.

SAS and CSS Spheres Macrostructure

SAS 10

SAS 200

CSS 165

CSS 350

Alumina-based Catalyst Carriers
Silica-based Catalyst Carriers*

Summary Table: Perlkats Spheres (Silicagel)

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Perlkat 97-0</th>
<th>Perlkat 46-10</th>
<th>Perlkat 25-0</th>
<th>Perlkat 29-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>wt %</td>
<td>99</td>
<td>82</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>wt %</td>
<td>0.5 max</td>
<td>9.0–16.0</td>
<td>0.5 max</td>
<td>2.0–4.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>wt %</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Surface Area</td>
<td>m²/g</td>
<td>330</td>
<td>330</td>
<td>700</td>
<td>630</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>cc/g</td>
<td>0.75</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Attrition</td>
<td>wt %</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>kg/m³</td>
<td>450</td>
<td>650</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>Crush Strength</td>
<td>N/100</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Phase</td>
<td></td>
<td>Amorphous</td>
<td>Amorphous</td>
<td>Amorphous</td>
<td>Amorphous</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>3 to 5 mm</td>
<td>1 to 4 mm</td>
<td>1 to 4 mm</td>
<td>1.5 to 5 mm</td>
</tr>
</tbody>
</table>

Perlkats Spheres Porosity

Perlkats portfolio offers substantial flexibility when selecting a sphere with appropriate porosity: from microporous monomodal to highly macroporous and bimodal.

Pore size distribution in Perlkats spheres is tunable. Customization of pore structure is feasible as per customer’s request.

Perlkats Spheres Surface Chemistry

Perlkats portfolio features spheres with varying surface acidity: from essentially non-acidic 97-0 to highly acidic 29-3.

Surface acidity (Bronsted and Lewis) has to be controlled to yield optimal performance of the catalyst and avoid side reactions. Type of the acid site defines chemical reactivity of the surface and what type of reactions those sites promote. Lewis acidity is normally associated with alumina while Bronsted acidity is arising due to the presence of bridged hydroxyl groups. Perlkats portfolio highlights pure SiO₂-based supports as well as alumina-promoted spheres. Adding alumina into the composition induces Lewis acidity but also generates Bronsted sites. Perlkat 97-0 is essentially non-acidic while Perlkat 29-3 exhibit substantial Bronsted acidity.

*Typical properties
Porosity of the support sphere is an important characteristic in catalyst development. Selecting a sphere with optimal pore size distribution is crucial to enhance mass transfer processes and maximize catalytic activity. Standard Perlkat portfolio offers microporous and macroporous materials with varying contributions of micro and macro pores.

Perlkat Spheres Macrostructure

Perlkat 97-0

Perlkat 46-10

Perlkat 25-0

Perlkat 29-3

Silica-based Catalyst Carriers
About Us

BASF’s Catalysts division is the world’s leading supplier of environmental and process catalysts. The division offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products, including advanced battery materials. By leveraging our industry-leading R&D platforms, passion for innovation and deep knowledge of precious and base metals, BASF’s Catalysts division develops unique, proprietary solutions that drive customer success.

BASF – We create chemistry

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required. © 2020 BASF

BF-10677 USL 08/2020