Important message on COVID19

Learn More Dismiss
Widest portfolio of adsorbent technologies for a broad spectrum of applications. Catalytic converters for aircraft cabins and fuel inerting. Cathode materials, e-mobility, next-generation technology solutions. Air cleaners that help to improve indoor air quality. Solutions for the most challenging applications. BASF maintains significant diesel research and development facilities around the world. These facilities are being used to develop the technologies needed to meet the extremely low emission levels called for in new emissions regulations. As the global leader in mobile emissions catalysts, BASF has developed a number of specialized catalyst technologies. BASF offers a "full loop" of precious metals products & services. Catalysts for chemical, petrochemical, and refining industries. We offer precious metals supply and full-loop management services, including refining to recover precious metals from spent catalysts. The development of fuels and chemicals based on biological feedstocks is critical to a sustainable future and BASF is proud to provide the catalysts to support this industry. BASF has established itself as a front-runner in this field by becoming the global market leader for sodium methylate, the homogeneous catalyst used for biodiesel production. BASF catalyst technologies play a crucial role in the manufacture of a wide range of fine and specialty chemical products including flavor and fragrances, herbicides and pesticides, resins, pigments and dyestuffs, pharmaceuticals, and plastic and rubber additives. Chemistry plays an important role in the transformation of vegetable oils to products for our daily life. Catalysts are an indispensable tool to make this transformation possible. BASF offers more than 125 years of experience with oxidation catalysts. Each percent of catalyst selectivity advantage creates additional value and reduces COx emission. Solutions for power plants, process industries and more. BASF Catalysts has long been a leader in the development of highly active, robust and selective catalysts and related technologies for the destruction of volatile organic compounds (VOC). Thermocouples, pyrometers - insights for higher yields. Our contact temperature probes include high temperature thermocouples, platinum thermocouples, noble metal thermocouples, thermocouples for the glass industry, profile and spike thermocouples for diffusion furnaces, high temperature industrial thermocouples, furnace thermocouples, and high temperature thermocouple wire and cable. A specialty of BASF for many years is the glass thermocouple. We have grown with the industry and, as glass technology requirements have expanded and changed over the years. Offering excellent accuracy, resolution, repeatability, and stability, EXACTUS® optical pyrometer technology provides significant performance advantages in non-contact temperature measurement in a practical, rugged and user-friendly design.

Choose your language

This section is available in the following languages: English

Thermocouple Wire

BASF has supplied science and industry with thermocouple wire for many years. We maintain an expert team of metallurgists, metrologists and process application engineers. All BASF-produced thermocouple wire conforms to the latest version of international standards. For all combinations, the EMF-temperature relationships are in accord with the applicable IEC (International Electrotechnical Commission) Standards, which incorporate all major national institutions.

Our thermocouple wires are based on precious metals, long recognized as the most reliable sensing elements for high-temperature measurement.

Our major wire thermocouple combinations include:

Type S: Pt vs. Pt 10 Rh

One of the most popular and widely used precious metal thermocouple combinations is known for its high accuracy over a broad temperature range. The combination has excellent mechanical and chemical properties, low electrical resistivity, and is readily obtainable in uniform quality and in very fine diameters.

Type R: Pt vs. Pt 13 R

This widely used combination is almost identical to Type S except for a slightly higher thermoelectric output, which accommodates instruments that have been calibrated for this output.

Type B: Pt 6 Rh vs. Pt 30 Rh

This widely used thermocouple is very similar to other Pt and Rh combinations. It performs well at the higher application temperatures where other combinations may be subject to accelerated drift or physical degradation. It is unique in that, at reference junction temperatures below 100° C, compensating lead wire is generally not necessary: plain copper conductors are adequate.

Pt 20 Rh vs. Pt 40 Rh

An extremely stable combination for very high temperature use in problematical environments. Its low sensitivity (4 microvolts per °C) requires the use of direct EMF reading instruments. An excellent researcher's tool for high temperature measurement.


A development by BASF Catalysts that brings together the high electrical output of the high base alloys with the oxidation resistance and stability of the precious metals. Often used as a direct replacement for Type K in process control applications where long life, stability, and continuous trouble-free performance is required.

Type C

W3Re vs. W25Re and W5Re vs. W26Re - These refractory metal combinations provide the ability to measure and control temperatures up to 2800° C, limited only by the availability of suitable insulation. The W3Re/W25Re combination developed by BASF Catalysts introduced the concept of doping the low rhenium allow leg in order to improve ductility and handling. Today's improved version of the W5Re/W26Re combination is also doped for similar benefits.