BASF Catalysts offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products including advanced battery materials. BASF’s Catalysts division is the world’s leading supplier of environmental and process catalysts. The group offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products, including advanced battery materials. We believe mobility’s future lies in more than just products. So where others come to a full stop, we’re just getting started—by leveraging the full power of BASF to continually advance our comprehensive package of sustainable solutions that enable us to travel further, as well as above and beyond. A leading supplier of high performance cathode active materials (CAM) for electrified vehicles to battery producers and automotive OEMs around the world. Protecting the air we breathe from harmful emissions through innovation. BASF leverages unsurpassed expertise in the development of emission control technologies for a wide range of market applications. BASF is committed to advancing and promoting environmentally-sound technologies to achieve a sustainable future in aviation. Offering 50 years of experience developing intelligent solutions for air quality over a wide range of applications — enabling clean air for a healthier, more sustainable future. As the global leader in chemical catalysts, BASF develops cutting-edge catalyst chemistry with our customers’ needs in mind. BASF offers the widest portfolio of adsorbent technologies for a broad spectrum of applications in industries such as refining, petrochemical, chemical, and gas processing. At BASF, our Fluid Catalytic Cracking (FCC) catalyst and additive offerings together with our expert technical services build the right solution to create value within any unit’s constraints. Paving the way toward a brighter, more secure future. Manufacturing products for sustainable solutions, reducing emissions from our processes, and using non-fossil fueled energy sources – all of these efforts help lead BASF on a continuing journey of sustainability. BASF Natural Gas experts have a diverse portfolio of products to custom design a solution and help you meet your Natural Gas treatment needs. BASF has been serving the natural gas treatment market for over 60 years. With more than 150 years of experience in metal sourcing, trading, and hedging, we’ve built tangible results for our industrial customers. With more than 100 years of experience in recycling materials, BASF’s end-to-end recycling program is known and trusted around the globe. As a leader in precious-metal thermocouples for many years, BASF recently applied its technological expertise to optical-based temperature measurement. With nearly 50 years of experience, we offer reliability and efficient solutions for the treatment of various gases. BASF Sorbead® Air adsorbents are alumino silicate gels in the form of hard, spherical beads. They are essential in removing water from compressed air so that the efficiency of chemical processes is not compromised. Sorbead® Air is the most energy saving and environmentally friendly adsorbent available for the air compression industry. Innovative, step-change technology with dual-purpose performance: removal of heavy hydrocarbons and water to cryogenic specifications in a single unit. Developing and producing pharmaceutical ingredients for more than 75 years, enabling us to provide the solutions you need to meet today's and tomorrow's challenges for your pharmaceutical business. Find the latest news and media information for BASF’s Catalysts division, headquartered in Iselin, New Jersey, USA, the world’s leading supplier of environmental and process catalysts.
BASF Catalysts | Refinery Catalysts BASF Catalysts | Refinery Catalysts

Choose your language

This section is available in the following languages: English

We enable sustainability

Reducing your carbon footprint with BASF Catalysts & Adsorbents

Discover our solutions on the BASF Blue Map

We at BASF understand the challenges our customers are facing to reduce CO2 emissions. We are facing them ourselves.

We support them to decarbonize their process through innovative technologies.

In our Blue Map, we summarize the catalysts we offer to make the utilization of CO2 feedstocks possible.

Click here to learn more about sustainability at BASF Process Catalysts.

Learn about our solutions and products by clicking on the applications or to contact one of our experts.

NH3 as fuel

NH3 cracking

The global shift towards renewable energy sources requires efficient storage and transport of energy from producing regions to consuming regions.

One of the most efficient energy vectors is green NH3, a well-known chemical that is easily transportable via established logistic channels.

Full or partial cracking of imported green NH3 will play a key role in the future industrial set-up by providing a source for green H2 where it is required.

Various applications are targeted, from large-scale industrial consumption in chemical processes to smaller-scale mobile or stationary fuel-cell applications.

Ammonia

Sustainable Methanol from CO2 & CO

Methanol from CO2 & CO

The easy handling, logistics, storage and its various uses are the reasons for the rising MeOH demand.

Accelerated by the megatrend of reducing carbon emissions, MeOH synthesized from CO2 and H2 is getting more and more attractive.

In addition, BASF offers novel MeOH synthesis catalysts (standard process) which are tailormade to perform at CO2-rich feedstock conditions.


Co2

Nitric acid & fertilizers

Green & blue fuel & olefins

More information to come.

Green Hydrogren Purification

Green hydrogen

Green Hydrogen refers to hydrogen generated by electrolysis with electrical energy generated by regenerative sources (wind, solar, hydropower).

Depending on the application, any oxygen still present in the hydrogen stream needs to be removed and the product stream must be dried.

BASF offers a complete range of product to treat the product streams from electrolyzers.

H2

Solid carbon

Dry Reforming of Methane

Dry reforming with SYNSPIRE™ G1-110

Production of syngas via conventional steam reforming process is an energy and CO2 intensive technology.

The new SYNSPIRE™ G1-110 catalyst enables a significant reduction of process steam associated to a large share of CO2 import, thus saving energy consumption and reducing the carbon footprint of your syngas operation.

Linde’s DRYREF™ advanced process technology is taking full advantage of the features of BASF’s new SYNSPIRE™ G1-110 catalyst.

Inline

Green & blue NH3

Renewable Energy

E-Furnace

Learn more about the BASF E-Furnace program here.

Natural Gas and Biomass

Water Electrolysis

PEM-Electrolysis needs high-performance, low PGM-loading catalysts

  • PEM-Electrolysis is a flexible and efficient water electrolysis technology to generate green hydrogen*
  • Ir- and Pt-based electrocatalyst are key to high efficiency and long-term stability of the electrolyzer stack
  • Today's limited Ir-supply and the projected demand growth for PEM-electrolyzers call for the development of catalysts that combine lower Ir-loadings with higher efficiency

Benefits for our customers:

  • Low-PGM electrolyzer catalysts
  • High efficiency & performance
  • High corrosion stability for enhanced lifetime
  • PGM handling: sourcing, supply and recycling
PEM

Methane pyrolysis

Methane pyrolysis is a new and innovative low emission technology:

Electricity is used to heat methane and split it into gaseous H2 and solid carbon.

Methane pyrolysis requires around 80% less electricity than the alternative method of producing hydrogen using water electrolysis.

If the energy comes from renewable sources, the process can be made carbon-free.

Learn more here.

Methane

N2O Decomposition & DeNOX technology

N2O decomposition & DeNOx technology

BASF was the first company to broadly apply N2O decomposition and DeNOx technologies to its own operations, demonstrating a pioneer approach for the control of green-house gas emissions.

BASF is today offering a full range of catalysts and high expertise for the decomposition of laughing gas (N2O) into its elemental components (N2 & O2).

BASF’s catalyst portfolio for the selective catalytic reduction of NOx (DeNOx) from stationary sources enables the elimination of hazardous pollutants without leaving any residues.


Carbon Capture & CO2 Purification

Carbon capture and storage technology

Carbon capture is enabled by BASF’s OASE® blue technology and CO2 dehydration via our Sorbead® aluminosilicate gel product line

We provide the solutions to separate, dehydrate, transport and store carbon dioxide thus helping our customers to reduce harmful greenhouse gas emissions

BASF provides a full-service package, from design to startup, including material supply, engineering and technical services, process optimization, troubleshooting, and sample analysis.

Find out more about BASF’s Oase® technology here.

Co2

Green Hydrogen Purification

Green hydrogen

Green Hydrogen refers to hydrogen generated by electrolysis with electrical energy generated by regenerative sources (wind, solar, hydropower).

Depending on the application, any oxygen still present in the hydrogen stream needs to be removed and the product stream must be dried.

BASF offers a complete range of product to treat the product streams from electrolyzers.

H2

Green CO Production

Green carbon monoxide production

The reverse water gas shift reaction consumes CO2 and generates CO and H2O, thus leading to green CO when applying H2 from renewable sources.

This reaction opens a pathway to the production of green syngas.

Green syngas is an interesting option to enter downstream applications such as the Fischer-Tropsch process to produce green fuels.

BASF has developed a new, Ni-based catalyst, with high activity and stability proven at miniplant scale.

We look for partnerships and target the demonstration of our performance at a larger scale

Green

Methanol Reforming

Methanol reforming as a local source for hydrogen

MeOH can be handled, transported and stored easily.

By reforming MeOH, it can be used as a decentralized, scalable H2 source.

BASF provides an efficient reforming catalyst ensuring maximum plant performance.

Our engineering partner is available to develop the plant design.

Methanol

SNG from CO2 Methanation

CO2 methanation

With a new technology and an innovative catalyst concept, CO2 & H2 can be used to produce synthetic natural gas (SNG) via the methanation reaction.

The SNG produced can be certified as carbon-neutral when considering the utilization of CO2 in the process feed.

The carbon-neutral SNG product may be entered into the gas grid at any location. It can later be consumed from the grid to use it at any location.

Co2

One-step Dimethyl Ether

One-step dimethyl ether process

Dimethyl ether (DME), conventionally produced in a two-step process via MeOH, is a well-known chemical mostly used in LPG blending.

Today, additional applications for DME contribute to address the global environmental challenges, e.g. using DME as alternative fuel or as key intermediate to olefin production.

Using an innovative approach, BASF focused on the efficient usage of CO2 to convert CO-rich syngas to dimethyl ether (DME) in a one-step process, taking advantage of favorable thermodynamics.

Co2

Dry Reforming of Methane

Dry reforming with SYNSPIRE™ G1-110

Production of syngas via conventional steam reforming process is an energy and CO2 intensive technology.

The new SYNSPIRE™ G1-110 catalyst enables a significant reduction of process steam associated to a large share of CO2 import, thus saving energy consumption and reducing the carbon footprint of your syngas operation.

Linde’s DRYREF™ advanced process technology is taking full advantage of the features of BASF’s new SYNSPIRE™ G1-110 catalyst.

Dry

Our way to net zero 2050

We are a key enabler in the net zero transformation of base chemicals and downstream value chains. Globally, we want to reduce our absolute CO2 emissions by 25% by 2030 compared with 2018. This means that, compared with 1990, we aim to reduce our global CO2 emissions by 60% by 2030. We aim to achieve net zero CO2 emissions at BASF by 2050.

We are a front-runner in offering customers a portfolio of products to enable their decarbonization.

Sustainability

Sustainability at BASF

We want to contribute to a world that provides a viable future with enhanced quality of life for everyone. We do so by creating chemistry for our customers and by making the best use of available resources.

Carbon footprint

Carbon Footprint

How much greenhouse gas emissions are associated with a product along its life cycle? This question has become increasingly important over the past years and a Product Carbon Footprint (PCF) can help to find answers.

Biomass

Biomass balance

BASF’s biomass balance approach contributes to the use of renewable raw materials in BASF's integrated production system and can be applied to the majority of BASF's product portfolio.

Carbon management

Carbon Management

To live up to our responsibility for climate protection, we focus on many levers to reduce CO2 emissions.

Contact an Expert